Probabilistic analysis of kernel principal components: mixture modeling, and classification

نویسنده

  • Shaohua Zhou
چکیده

This paper presents a probabilistic approach to analyze kernel principal components by naturally combining in one treatment the theory of probabilistic principal component analysis and that of kernel principal component analysis. In this formulation, the kernel component enhances the nonlinear modeling power, while the probabilistic structure offers (i) a mixture model for nonlinear data structure containing nonlinear sub-structures, and (ii) an effective classification scheme. It also turns out that the original loading matrix is replaced by the newly defined empirical loading matrix. The expectation/maximization algorithm for learning parameters of interest is then developed. Computation of reconstruction error and Mahalanobis distance is also discussed. Finally, we apply this to a real application of face recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Analysis of Kernel Principal Components

This paper presents a probabilistic analysis of kernel principal components by unifying the theory of probabilistic principal component analysis and kernel principal component analysis. It is shown that, while the kernel component enhances the nonlinear modeling power, the probabilistic structure offers (i) a mixture model for nonlinear data structure containing nonlinear sub-structures, and (i...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Modeling Category Structures with a Kernel Function

We propose one type of TOP (Tangent vector Of the Posterior log-odds) kernel and apply it to text categorization. In a number of categorization tasks including text categorization, negative examples are usually more common than positive examples and there may be several different types of negative examples. Therefore, we construct a TOP kernel, regarding the probabilistic model of negative exam...

متن کامل

Empirical kernel map approach to nonlinear underdetermined blind separation of sparse nonnegative dependent sources: pure component extraction from nonlinear mixture mass spectra

Nonlinear underdetermined blind separation of nonnegative dependent sources consists in decomposing a set of observed nonlinearly mixed signals into a greater number of original nonnegative and dependent component (source) signals. This hard problem is practically relevant for contemporary metabolic profiling of biological samples, where sources (a.k.a. pure components or analytes) are aimed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003